1. paizaラーニングトップ
  2. レベルアップ問題集
  3. グラフ・DFSメニュー(言語選択)
  4. 問題一覧
  5. パスの経由地 2

グラフ・DFSメニューのサムネイル
パスの経由地 2(paizaランク B 相当)

問題にチャレンジして、ユーザー同士で解答を教え合ったり、コードを公開してみよう!

問題

下記の問題をプログラミングしてみよう!

1, ..., n の番号がついた n 個の頂点とそれらをつなぐ枝からなる無向グラフを考えます。ただし、自己ループと多重辺は考えません。

隣接リストとある頂点の組 (s,t) と s, t ではない頂点 p が与えられます。このとき、頂点 s と頂点 t を端点とし、頂点 p を経由するパスを全て出力してください。ただし、ここでパスとは頂点と枝の反復を許さない経路のことを言います。

入力される値

n s t p
v_1
a_{1,1} a_{1,2} ... a_{1,v_1}
v_2
a_{2,1} ... a_{2,v_2}
...
v_n
a_{n,1} ... a_{n,v_n}

・ 1 行目に、頂点の個数を表す整数 n と、端点の頂点番号 s と t と経由地の頂点番号 p が与えられます。

・ 2i 行目には頂点 i に隣接している頂点の個数が与えられ、 2i+1 行目には頂点 i に隣接している頂点の番号が半角スペース区切りで与えられます。(1 ≦ i ≦ n)


入力値最終行の末尾に改行が1つ入ります。
文字列は標準入力から渡されます。 標準入力からの値取得方法はこちらをご確認ください
期待する出力

1 行目にパスの総数を出力してください。その後改行して、頂点 p を経由する頂点 s と t を端点とするパスを全て求め、各パスが辿る頂点の番号を順番に左から半角スペース区切りでそれぞれ改行して出力してください。2 行目以降に出力するパスの順番は問いません。各パスは一番左が s であり、一番右が t となります。全てのパスが W 個ならば、1 行目に W と出力し、その後 W 行出力してください。

条件

すべてのテストケースにおいて、以下の条件をみたします。

・ 3 ≦ n ≦ 10

・ 1 ≦ s,t,p ≦ n

・ s ≠ t

・ p ≠ s,t

・ 1 ≦ v_i ≦ n-1 (1 ≦ i ≦ n)

・ 1 ≦ i ≦ n について

 ・ v_i = 1 のとき : 1 ≦ a_{i,1} ≦ n

 ・ v_i > 1 のとき : 1 ≦ a_{i,j} < a_{i,j+1} ≦ n (1 ≦ j ≦ (v_i)-1)

入力例1

5 1 4 3
2
2 5
3
1 3 5
3
2 4 5
2
3 5
4
1 2 3 4

出力例1

5
1 2 3 4
1 2 3 5 4
1 2 5 3 4
1 5 2 3 4
1 5 3 4

入力例2

5 5 3 1
2
2 5
3
1 3 5
3
2 4 5
2
3 5
4
1 2 3 4

出力例2

1
5 1 2 3

入力例3

8 8 4 1
1
2
7
1 3 4 5 6 7 8
6
2 4 5 6 7 8
6
2 3 5 6 7 8
6
2 3 4 6 7 8
6
2 3 4 5 7 8
6
2 3 4 5 6 8
6
2 3 4 5 6 7

出力例3

0

問題一覧へ戻る

ページの先頭へ戻る