「Numpy」が学べる動画一覧

Pythonの数値計算ライブラリである、Numpyについて学ぶことができるチャプターです。
※初めてpaizaラーニングを使う方は、動画学習を始める前にこちらをご覧ください。

チャプター一覧

(6:02)
無料公開中 機械学習
ここでは、Jupyter Notebookと呼ばれるPythonの実行結果を便利に確認できるツールを試してみましょう。さらに、数値やグラフを扱ってみましょう。
(11:29)
無料公開中 機械学習
ここでは、SVMと呼ばれる機械学習のパターン認識モデルを分類問題に適用する手順を確認します。さらに分類の様子を描画してSVMによる分類のイメージをつかみましょう。
(7:55)
ここでは、音声データとはどのようなデータなのか確認します。高音のデータと低音のデータを描画したしてみて、違いを確認しましょう。
(9:17)
ここでは、音声データをそのままSVMに与えて、話者認識をしていきます。さらに、この手法の問題点を考察します。
(7:07)
ここでは、音声データをフーリエ変換して求められる特徴量を使って話者認識することで予測精度の向上を目指します。さらに、この手法の問題点を考察します。
(11:40)
ここでは、1つの音声データから時間ごとに複数の特徴量を取り出して利用することで、予測の精度の向上を目指します。フーリエ変換によるパワースペクトルだけでなく、音声の特徴量として知られているMFCCも利用します。
ページの先頭へ戻る