問題にチャレンジして、ユーザー同士で解答を教え合ったり、コードを公開してみよう!
巡回セールスマン問題とは、都市の集合と各都市間の距離が与えられ、全都市をちょうど1回ずつ訪れたのち出発した都市に戻ってくるような経路 (巡回路) のうち最も短いものを求める問題です。
ここでは、巡回セールスマン問題に対する 2-近似アルゴリズムを学習しましょう。このアルゴリズムは、最悪でも最適値の 2 倍以下の値を持つ解を出力します。
巡回セールスマン問題に対する 2-近似アルゴリズムの概要は、以下の通りです。
・ 都市をグラフの頂点とみなし、最小全域木 MST を求める
・ MST の辺を複製して二重にしたグラフを作り、一筆書きをする
・ 一筆書きにおいて訪れる都市を先頭から順に並べる。ただし既に訪れた都市には再度訪れないようにして、全都市をちょうど 1 度ずつ訪れる経路 (巡回路) を作る
n
x_0 y_0
x_1 y_1
...
x_{n-1} y_{n-1}
「最適値 (巡回路長の最小値) の 2 倍」以下の巡回路長を持つ巡回路を出力してください。巡回路は都市番号 (0, 1, ... , n-1) の順列で表し、半角スペース区切りで出力してください。
すべてのテストケースにおいて、以下の条件をみたします。
・ 入力はすべて整数
・ 2 ≦ n ≦ 20
・ -1,000 ≦ x_i, y_i ≦ 1,000 (0 ≦ i ≦ n-1)
・ i ≠ j ならば (x_i, y_i) ≠ (x_j, y_j)
4
0 0
2 2
-1 1
0 -2
3 2 0 1